Online / Physical Event

Webinar on Materials Science & Engineering

Theme: Honouring the Past, Treasuring the Present and Shaping the Future in Materials Science & Engineering

Event Date & Time

Event Location

Amsterdam, Netherlands

Brochure Program Abstract Registration ReaderBase Awards

20 Years Of Excellence in Scientific Events

441357340013

Performers / Professionals From Around The Globe

Conference Speaker

Stoyan Sarg Sargoytchev

World Institute for Scientific Exploration
USA

Conference Speaker

Roland Wisniewski

Warsaw University of Technology
Poland

Conference Speaker

Haruo Sugi

Teikyo University
Japan

Conference Speaker

Genda Chen

Missouri University of Science and Technology
USA

Conference Speaker

Vladimir Levchenko

Lomonosov Moscow State University
Russia

Conference Speaker

Vojislav V.Mitic

University of NIS
Serbia

Conference Speaker

Aman Ullah

University of Alberta
Canada

Conference Speaker

John Owen Roberts

Freelance and former Open University Tutor
UK

Conference Speaker

Tsvetanka S Zheleva

US Army Research Lab
USA

Conference Speaker

Satoshi Fujii

National Institute of Technology
Japan

Conference Speaker

Hiroyuki Aoki

Japan Atomic Energy Agency
Japan

Conference Speaker

Eunsoo Choi

Hongik University
South Korea

Tracks & Key Topics

Materials Congress 2020

About Conference

Theme: Honouring the Past, Treasuring the Present, Shaping the Future in Materials Science & Engineering

EuroSciCon welcomes the members from everywhere throughout the globe to partake in this annual flagship gathering with the topic " Honouring the Past, Treasuring the Present, Shaping the Future in Materials Science & Engineering ". The idea behind Materials Congress 2020 is to share the new thoughts among the experts, industrialists and understudies from research regions of Materials Science, Nanotechnology, Chemistry and Physics to share their examination encounters and intuitive discourses and specialized sessions at the occasion. This event would be the perfect platform for companies and institutions to present their services, products, innovations and research results.

Materials Science is a challenging field to contemplate and get learning about Composite materials. It has incited and added to the rise of different materials like nanomaterials, biomaterials, electronic, optical, magnetic materials, ceramics, glasses, polymers, metal alloys, smart materials, semiconductor materials and plan of muddled structures through the development of innovation by the progressions in the study of materials science.

World congress on Materials Science and Engineering - 2020 which will be the greatest gathering dedicated to Materials giving a chief specialized discussion to announcing and finding out about the most recent innovative work alongside talking about new applications and advances. This occasion incorporates the introduction of most recent advances from everywhere throughout the globe and expert systems administration with ventures, driving working gatherings and boards.

Meet the Objective Business area with people from and around the world focused on getting some answers concerning Materials science and Engineering, this is the most obvious opportunity to accomplish the greatest accumulation of individuals from everywhere throughout the World. This gathering will drives you to get scatter information, meet with current, make a sprinkle with another item offering and get name affirmation at this event. Generally acclaimed speakers, the most recent techniques, methodologies, and the most exceptional updates in Materials science and Engineering are indications of this gathering.

Who can attend??

Materials Science Congress-2020 brings together the specialists from all the aspects to meet and discuss the future of Materials Science and Importance of Material science and engineering in today’s world. The conference will bring together  Directors, Aerospace scientists, Director of Laboratories, Universities, Industries , Professors, Delegates, Clinical Research specialists, Post-Doctoral Fellows, Research and Clinical Fellows, Students, Research companies, Market Research and Consulting Firms and all the interested participants willing to enhance and update the knowledge on Material Science and Engineering.

About Subject:

Materials Science is a field of innovation that incorporates the range of materials types and how to utilize them in manufacturing. Materials span the range: metals, ceramics, polymers (plastics), semiconductors, and mixes of materials called composites. We see a daily reality that is both ward upon and constrained by materials. All that we see and use is made of materials: vehicles, planes, PCs, coolers, microwaves, TVs, dishes, flatware, athletic hardware of various types, and even biomedical gadgets, for example, replacement joints and limbs. These require materials explicitly custom fitted for their application. Explicit properties are necessitated that outcome from cautiously choosing the materials and from controlling the assembling procedures used to change over the essential materials into the last designed item.

Materials science has consistently been with us from the old occasions and has consistently been the foundation of human's advancement and improvement. Materials researchers lay weight on seeing how the historical backdrop of a material impacts its structure, and along these lines its properties and execution. All this factors have paved way for the improvement of the quality of human life to a great extent. Materials Congress 2020 gives you the top to bottom investigation of materials explore and new definition to your minds. Materials Congress 2020 gives you the base to manufacture your very own mansion of information and makes you totally prepared and sets you up for the difficulties in material science Industry.

Sessions/Tracks

Track 1: Mechanics of materials

Mechanics of materials is a subject which manages the conduct of vigorous items subject to stresses and strains. The entire hypothesis commenced with the phrenic conception of the conduct of one and two dimensional individuals from structures, whose conditions of stress can be approximated as two dimensional, and was then summed up to three quantifications to build up a more total hypothesis of the multifarious and plastic conduct of materials. The investigation of quality of materials frequently alludes to different strategies for computing the anxieties and strains in auxiliary individuals, for example, bars, sections, and shafts. The techniques utilized to anticipate the reaction of a structure under stacking and its defenselessness to different disappointment modes considers the properties of the materials, for example, its yield quality, extreme quality, Adolescent's modulus, and Poisson's proportion; likewise the mechanical component's naturally visible properties (geometric properties, for example, its length, width, thickness, limit requisites and unexpected vicissitudes in geometry, for example, apertures are considered.

Track 2: Materials Physics

Material Physics is the utilization of physical science to portray the physical properties of materials. It is a mix of physical sciences, for example, strong mechanics, strong state physical science, and materials science. Materials physical science is viewed as a subset of dense issue material science and applies major consolidated issue ideas to complex multiphase media. They have a wide use in different fields which incorporates the advancement of Optoelectronic Materials and Devices and make utilization of quantum specks which are pervasive in semiconductors. A wide range of subjects constitutes material science which is Photo catalysis, laser material science, molecule material science and explanatory physical science. The market for printable or conceivably printable photovoltaic is relied upon to ascend from 260 million euros (2011) to approximately 5.7 billion euros by 2021. The worldwide market for semiconductor segment advertise came to $335.8 billion of every 2014, advance amid the determined period from 2015 to 2020; the market is relied upon to reach $593.6 billion by 2020 at a five year CAGR of 10.1%. The memory items keep on driving the general market other than the small scale parts, ICs, discrete and optical items. he rivalry in the worldwide semiconductor advertise is exceptional inside a couple of huge players, for example, AMD, Amkor, Broadcom, Cabot Microelectronics, Elpida, Fairchild, Free scale, Fujitsu, Global Foundries, Infineon, Intel, Marvell, Media Tek, Micron, NEC, NVIDIA, NXP, Qualcomm and so forth. Condensed matter physics

Track 3: Materials Chemistry

Material science includes the blend and investigation of materials that have fascinating and possibly helpful electronic, attractive, optical, and mechanical properties. Material science is a standout amongst the most talked points over the most recent couple of years. They are the new branch of materials science which exploit new improvements in science. Truth be told, science may give a total new leading body of materials for materials researchers and architects to utilize. Science started, and to a great extent proceeds with today, to be inseparably connected with getting ready, handling, and using materials. A significant part of the concentration of materials science in finding and creating materials that might be abused for wanted applications. Today, numerous materials scientific experts are integrating practical gadget materials, and the teach is frequently observed as coordinated towards creating materials with work—electrical, optical, or attractive. Material science is associated with the outlining and handling of materials. Worldwide market for impetuses is relied upon to reach $28.5 billion by 2020, developing at a CAGR (2015 to 2020) of more than 3%. Asia-Pacific is having the biggest market for impetuses representing over 35% offer. Significant players for Catalysts are Albemarle, Arkema, BASF, Chevron, Clariant, Dupont, Zeolyst International and others. Sol-gel technique

Track 4: Polymer Science & Technology

Material science has a more extensive scope of utilizes which incorporates earthenware engenderment, composites and polymer materials. Holding in earthenware engenderment and glasses utilizes both covalent and ionic-covalent sorts with SiO2 as an essential building square. Earthenware engenderment are as delicate as mud or as hard as stone and cement. Generally, they are crystalline in shape. Most glasses contain a metal oxide melded with silica. Applications go from rudimental components, for example, steel-fortified cement, to the gorilla glass. Polymers are likewise a critical piece of materials science. Polymers are the crude materials which are utilized to make what we conventionally call plastics. Claim to fame plastics are materials with particular attributes, for example, ultra-high quality, electrical conductivity, electro-fluorescence, high warm solidness. Plastics are partitioned not on the premise of their material but rather on its properties and applications. The ecumenical market for carbon fiber came to $1.8 billion of every 2014, and further the market is relied upon to develop at a five-year CAGR (2015 to 2020) of 11.4%, to reach $3.5 billion out of 2020. Carbon fiber fortified plastic market came to $17.3 billion of every 2014, and further the market is required to develop at a five-year CAGR (2015 to 2020) of 12.3%, to reach $34.2 billion out of 2020. The opposition in the ecumenical carbon fiber and carbon fiber invigorated plastic market is extraordinary inside a couple of extensive players, for example, Toray Toho, Mitsubishi, Hexcel, Formosa, SGL carbon, Cytec, Aksa, Hyosung, Sabic, and so on.Process modelling and simulation.

Track 5: Optical Materials

Optical Materials used for the trading of light by infers that of shrewd, holding, focusing or part of an optical shaft. The result of those materials is incredibly poor of the distinctive wavelengths. A broad assortment of asks about were coordinated and prompts the change of lasers, warm surge, photon conductivity and optical strands et cetera.

Track 6: Graphene & 2D Materials

Graphene was the first 2D material to be isolated. Graphene and other two-dimensional materials have a long list of unique properties that have made it a hot topic for intense scientific research and the development of technological applications. These also have huge potential in their own right or in combination with Graphene. The extraordinary physical properties of Graphene and other 2D materials have the potential to both enhance existing technologies and also create a range of new applications. Pure Graphene has an exceptionally wide range of mechanical, thermal and electrical properties. Graphene can also greatly improve the thermal conductivity of a material improving heat dissipation. In applications which require very high electrical conductivity Graphene can either be used by itself or as an additive to other materials. Even in very low concentrations Graphene can greatly enhance the ability of electrical charge to flow in a material. Graphene’s ability to store electrical energy at very high densities is exceptional. This attribute, added to its ability to rapidly charge and discharge, makes it suitable for energy storage applications.

Track 7: Materials in Industry

Materials Science has a more broad extent of usages which joins ceramic generation, composites and polymer materials. Stoneware are as sensitive as earth or as hard as stone and bond. Generally, they are crystalline in outline. Most glasses contain a metal oxide merged with silica. Applications stretch out from assistant parts, for instance, steel-fortified bond, to the gorilla glass. Polymers are furthermore a basic bit of materials science. Polymers are the unrefined materials which are used to make what we as a rule call plastics. Plastics are isolated not founded on their material but instead on its properties and applications. The overall market for carbon fiber came to $1.8 billion out of 2014, and further the market is depended upon to create at a five-year CAGR (2015 to 2020) of 11.4%, to reach $3.5 billion of each 2020. Carbon fiber reinforced plastic market came to $17.3 billion out of 2014, and further the market is depended upon to create at a five-year CAGR (2015 to 2020) of 12.3%, to reach $34.2 billion out of 2020. The resistance in the overall carbon fiber and carbon fiber invigorated plastic market is outstanding inside several generous players, for instance, Toray Toho, Mitsubishi, Hexcel, Formosa, SGL carbon, Cytec, Aksa, Hyosung, Sabic, etc.

Track 8: Composite Materials

Composite materials are organized materials made out of at least two perceptible stages. Applications run from basic components, for example, steel-strengthened cement, to the warm protecting tiles which play a key and indispensable part in NASA's Space Shuttle warm insurance framework which is utilized to shield the surface of the bus from the warmth of reentry into the Earth's climate. One illustration is fortified Carbon-Carbon (RCC), the light dim material which withstands re-entry temperatures up to 1,510 °C (2,750 °F) and secures the Space Shuttle's wing driving edges and nose top. RCC is a covered composite material produced using graphite rayon fabric and impregnated with a phenolic pitch. Subsequent to curing at high temperature in an autoclave, the cover is pyrolized to change over the gum to carbon, impregnated with furfural liquor in a vacuum chamber, and cured-pyrolized to change over the furfuralalcohol to carbon. To give oxidation protection from reuse capacity, the external layers of the RCC are changed over to silicon carbide.

Track 9: Electronic, Optical & Magnetic Materials

For any electric gadget to work well, electrical current must be productively controlled by exchanging gadgets, which ends up plainly difficult as frameworks approach little measurements. This issue must be tended to by integrating materials that allow solid turn-on and kill of current at any size scale. New electronic and photonic nanomaterials guarantee sensational leaps forward in interchanges, registering gadgets and strong state lighting. Flow investigate includes mass gem development, natural semiconductors, thin film and nanostructure development, and delicate lithography. A few of the major photonics organizations on the planet sees on various advancements and suppositions about future difficulties for makers and integrators of lasers and photonics items. The silicon photonics advertise is foreseen to develop to $497.53 million by 2020, extending at a CAGR of 27.74% from 2014 to 2020. The silicon carbide semiconductors advertise is evaluated to develop $3182.89 Million by 2020, at a normal CAGR of 42.03% from 2014 to 2020.Film Dosimetry and Image Analysis

Track 10Semiconductor Materials & Nanostructure

By permitting numerous intensifies, some semiconductor materials are tuneable that outcomes in ternary, quaternary organizations. Uses of semiconductors materials are optoelectronic, sun oriented cells, Nano photonics, and quantum optics. Creation of cellulose Nano-structures by means of Nano Synthesis is an immediate change of TMSC layers into cellulose by means of a Nano-sized centered electron shaft as utilized as a part of examining electron magnifying lens. Types of semiconductor materials

Track 11: Recent developments in Nanotechnology and Nanoscience

Nanotechnology will be utilized for Detection, Diagnostics, Therapeutics and Monitoring. Themes like Nanotechnology based Imaging Technologies and Lab-on-a-Chip Point of Care Diagnostics, Advanced Nano-Bio-Sensor Technologies, Implantable Nano sensors, Nano Arrays for Advanced Diagnostics and Therapy, Invasive Therapy Technologies and Cellular based Therapy might be talked about.

Track 12: Materials for Green Technology

Diverse geophysical and social weights are giving a move from customary petroleum products to inexhaustible and supportable vitality sources. We should make the materials that will bolster rising vitality advancements. Sun based vitality is the best need of the office, and we are giving broad assets to creating photovoltaic cells that are both more effective and less expensive than current innovation. We likewise have broad research on cutting-edge battery innovation. Materials execution lies at the core of the advancement and enhancement of efficient power vitality innovations and computational techniques now assumes a noteworthy part in demonstrating and anticipating the properties of complex materials.

Track 13: Ceramic and Glass materials

Holding in ceramic production and glasses utilizes covalent and ionic-covalent sorts with SiO2 (silica or sand) as a major building square. Pottery are as delicate as earth or as hard as stone and cement. For the most part, they are crystalline in frame. Building earthenware production are known for their firmness and solidness under high temperatures, pressure and electrical anxiety. Alumina, silicon carbide, and tungsten carbide are produced using a fine powder of their constituents in a procedure of sintering with a cover. Hot squeezing gives higher thickness material. Synthetic vapor testimony can put a film of an earthenware on another material. Ceramets are artistic particles containing a few metals.

Track 14:  Nanostructured materials

Nanostructured materials might be characterized as those materials whose basic components—bunches, crystallites or particles—have measurements in the 1 to 100 nm go. The blast in both scholarly and modern enthusiasm for these materials over the previous decade emerges from the wonderful varieties in key electrical, optical and attractive properties that happen as one advances from a 'vastly expanded' strong to a molecule of material comprising of a countable number of particles. this survey subtle elements late advances in the blend and examination of practical nanostructured materials, concentrating on the novel size-subordinate physical science and science that outcomes when electrons are limited to nanoscale semiconductor and metal bunches and colloids. Carbon-based nanomaterials and nanostructures including fullerenes and nanotubes assume an undeniably inescapable part in nanoscale science and innovation and are in this way depicted in some profundity. Current nanodevice manufacture strategies and the future prospects for nanostructured materials and nanodevices.

Track 15: Carbon nanotubes & Graphene 

Graphenated Carbon Nanotubes are a new half-breed that joins graphitic foliates developed with sidewalls of bamboo style CNTs. It has a high surface area with a 3D system of CNTs combined with the high edge thickness of Graphene. Concoction alteration of carbon nanotubes are covalent and non-covalent adjustments because of their hydrophobic nature and enhance bond to a mass polymer through a compound connection. Uses of the carbon nanotubes are composite fiber, wrenches, homerun sticks, Microscope tests, tissue building, vitality stockpiling, supercapacitor and so forth. Nanotubes are classified as single-walled and multi-walled nanotubes with related structures.

Track 16: Nanotechnology in Material Science

Nanotechnology in material science offers a solid prologue to principal ideas on the wellspring of material science. It conveys the focal issues of material science and incorporates imaginative research on Atomic and Nano structures and furthermore small scale and large scale structures. The essentials of material science likewise manage the Crystallography, holding properties, material union and with thermodynamic and active properties.

Track 17: Emerging Smart materials and technologies

The medieval ages where stone, bronze, steel was utilized have now prompted development of Ceramics, Minerals from where Metallurgy field stirred. Material science, Chemistry, thermodynamics and a few different fields of science have looked into metals, composites, silica and carbon nanomaterial.

Material Science has now reformed from metals and composites to semiconductors, plastics, biomaterials, rubbers, polymers, attractive materials, restorative embed materials, nanomaterial and so forth and it doesn't stop there yet! Shrewd structures are gadgets made out of keen materials fit for detecting upgrades, reacting to it and returning to its unique state after the boosts is expelled. Self-Healing Materials, Magnetocaloric and thermoelectric materials, Polycaprolactone are rising brilliant structures. Brilliant structures can oppose common catastrophes.A few materials like LiTraCon, Silicene, Aerogels, Graphene, Fullerene, Metamaterials, Quantum Dots and Lithium Ion Batteries have been developing. These developing savvy materials have discovered potential applications in wellbeing, aviation, car industry and so forth.

Track 18: Materials characterization

Materials portrayal is the wide and general process by which a material's structure and properties are examined and measured. It is an essential procedure in the field of materials science, without which no logical comprehension of building materials could be found out. While numerous portrayal systems have been rehearsed for a considerable length of time, for example, essential optical microscopy, new procedures and strategies are continually rising. Specifically the coming of the electron magnifying instrument and Secondary particle mass spectrometry in the twentieth century has reformed the field, permitting the imaging and investigation of structures and pieces on substantially littler scales than was beforehand conceivable, prompting a tremendous increment in the level of understanding with reference to why diverse materials indicate distinctive properties and practices. All the more as of late, nuclear power microscopy has additionally expanded the most extreme conceivable determination for investigation of specific specimens over the most recent 30 years

 

 

Market Analysis

Materials Congress 2020 might be a field of innovation that envelops the range of materials assortments and the best approach to utilize them in delivering. Materials length the range: metals, pottery, polymers (plastics), semiconductors, and blends of materials known as composites. We tend to rest in a world that is every needy upon and confined by materials. All that we tend to see and utilize is made of materials: vehicles, planes, PCs, coolers, microwaves, TVs, dishes, flatware, athletic instrumentation of different types, and even prescription gadgets like substitution joints and appendages. Those need materials explicitly custom-made for their application. Explicit properties territory unit required that outcome from meticulously picking the materials and from overwhelming the delivering procedures wont to change over the basic materials into a definitive structured item. New materials innovations created through designing and science can in any case construct astounding changes in our lives inside the twenty first century, and people in Materials Science and Engineering can in any case be a key in these progressions and advances.

These specialists shake the science and innovation of assembling materials that have properties and shapes fitting for reasonable use. Exercises of those designers shift from essential materials creation, just as use, through the arranging and improvement of late materials to the solid and conservative delivering for a definitive item. Such exercises zone unit found more often than not in ventures like part, transportation, common way of thinking, vitality transformation, and therapeutic claim to fame frameworks. The long run can bring regularly expanding difficulties and open doors for fresh out of the plastic new materials and higher procedure. Materials territory unit  advancing speedier nowadays than whenever ever. New partner degree improved materials region unit a "supporting innovation" - one which may invigorate development and product improvement. prime quality item result from improved procedure and a great deal of pressure will be put on recovering and use. For these few reasons, most studies name the materials field all in all of the vocations with brilliant future chances.

Major Material Science Associations around the Globe

  • American Chemical Society (ACS)
  • American Physical Society (APS)
  • The Materials Information Society (ASM International)
  • The Materials Research Society (MRS)
  • Microscopy Society of America (MSA)
  • The Minerals, Metals & Materials Society (TMS)
  • Sigma Xi: The Scientific Research Society
  • International Society for Optical Engineering (SPIE)
  • The American Ceramic Society (ACerS)

Major Universities of Nanotechnology and Material Engineering in Europe:

  • University Rovira
  • Jaume University
  • National University of Science and Technology
  • Novosibirsk State University
  • Peter the Great St. Petersburg Polytechnic University
  • Jonkoping University
  • Samara National Research University
  • West University of Timisoara
  • Advanced Materials Science & Engineering
  • Master of Science Product Refinement
  • Advanced Materials Science & Engineering
  • Master in Engineering Materials Science
  • Master in Macromolecular Materials
  • Master in Product Development and Materials Engineering

Significance and Scope:

Materials Science and building is a syncretic request hybridizing metallurgy, Ceramic generation, strong state physical sciences, and Chemistry This making field incorporates analysts from a wide scope of controls, including physicists, Material Science specialists, Ceramic architects, logical specialists, engineers, information technologists and material Researchers, and scholars.Ceramics designing is being associated with generally all fields imaginable, including equipment, magnetics, information advancement, materials improvement and biomedicine. World Congress on Materials Science and Engineering'(MATERIALS CONGRESS 2020)will be a run of the mill organize for Researchers, Scientist, pioneers, perusers, educators, Industry Leaders, understudies and general understudies to preset and exchange musings related to materials and sciences propels. We are fulfilled to respect every one of you to the of "Materials Congress 2020" which is going to hung on April 29-30, 2020, Rome, Italy

Target Audience

  • Materials Scientists/Research Professors
  • Physicists/Chemists
  • Junior/Senior research fellows of Materials Science/ Nanotechnology/ Polymer Science/
  • Biotechnology
  • Materials Science Students
  • Directors of chemical companies
  • Materials Engineers
  • Members of different Materials science associations.
  • Polymer companies.

 

 

Learn More

Dementia, Dec 06-07, 2018 Netherlands | Chemistry Research, Dec 06-07, 2018 Netherlands | Clinical pathology , Feb 27-28, 2019 Czech Republic | Euro Gastro 2019, March 11-12, 2019 Netherlands | Dental & Dental Hygiene, March 25-26, 2019 Hungary | Data Analytics , April 08-09, 2019 France | Dermatology 2018, April 18-19, 2019 France | Microbiology and Virology, April 22-23, 2019 Greece | Infectious Diseases & Std-Aids 2019April 15-16, 2019 France | Quantum & Plasma physics , May 09-10, 2019 Sweden | Euro Optics, May 09-11, 2019 Sweden | Advance Nursing Practice, May 23-24, 2019 Sweden | Psychiatry & Psychology , April 11-12, 2019 France | Renewable and Green Energy, March 21-22, 2019 Netherlands| Nano 2019, Oct 07-09, 2019, Japan | Advanced Energy Materials, Oct 07-09, 2019 Japan | Nursing Diagnosis, July 25-26, 2019 Luxembourg |Nursing & Midwifery, May 23-24, 2019  Sweden | Nuclear Medicine & Radiation Therapy, June 10-12, 2019 Netherlands

Top Material Science Universities Worldwide:

Material Science Universities in Europe:

University of Cambridge | University of Oxford | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Imperial College London | ETH Zurich - Swiss Federal Institute of Technology | Delft University of Technology | RWTH Aachen University | The University of Manchester | KTH Royal Institute of Technology | KIT, Karlsruhe Institute of Technology | Chalmers University of Technology | Institut polytechnique de Grenoble - Grenoble Institute of Technology | KU Leuven | Politecnico di Milano | Technical University of Denmark | Technische Universität Berlin (TU Berlin) | Technische Universität Dresden | Technical University of Munich | Technische Universität Dresden | Technical University of Munich | UCL (University College London) | University of Birmingham | Aalto University | University of Liverpool | University of Southampton | Uppsala University | Norwegian University of Science And Technology | Politécnica de Madrid | Queen Mary University of London | Sapienza University of Rome | Vienna University of Technology | Trinity College Dublin | Università di Padova | Norwegian University of Science And Technology | Politécnica de Madrid | Queen Mary University of London | Sapienza University of Rome | Vienna University of Technology | Universitat Politècnica de Catalunya | University of Liverpool | University of Southampton | Uppsala University | Trinity College Dublin, The University of Dublin | Università di Padova | Alma Mater Studiorum - University of Bologna | Universitat Politècnica de Catalunya | Université Grenoble-Alpes | University of Antwerp | The University of Edinburgh | Ghent University | University of Helsinki | University of St Andrews | Utrecht University | Cranfield University |

Material Science Universities in USA:

Massachusetts Institute of Technology (MIT) | Stanford University | University of California, Berkeley (UCB) | Harvard University | Northwestern University | Georgia Institute of Technology | University of California, Los Angeles (UCLA) | University of Illinois at Urbana-Champaign | California Institute of Technology (Caltech) | University of Texas at Austin | University of California, Santa Barbara (UCSB) | Cornell University | Carnegie Mellon University | University of Michigan | Pennsylvania State University | Purdue University | University of Pennsylvania | Rice University | Brown University | Case Western Reserve University | Columbia University | Duke University | Johns Hopkins University | North Carolina State University | The Ohio State University | Princeton University | Rensselaer Polytechnic Institute | Texas A&M University | University of California, Davis | University of California, San Diego (UCSD) | University of Florida | University of Minnesota | University of Washington | University of Wisconsin-Madison | Yale University | Boston University | Michigan State University | Rutgers University - New Brunswick | University of Colorado Boulder | University of Maryland, College Park | University of Massachusetts Amherst | University of Pittsburgh | University of Southern California | The University of Tennessee, Knoxville | Virginia Polytechnic Institute and State University | Colorado School of Mines | Drexel University | Iowa State University | University of Delaware | University of Illinois, Chicago (UIC) | University of North Carolina, Chapel Hill | University of Notre Dame | University of Texas Dallas |

Material Science Universities in Asia:

Nanyang Technological University, Singapore (NTU) | National University of Singapore (NUS) | Tsinghua University | KAIST - Korea Advanced Institute of Science & Technology | The University of Tokyo | Peking University | Seoul National University | Tohoku University | The Hong Kong University of Science and Technology | Fudan University | Kyoto University | Kyoto University | Tokyo Institute of Technology | Pohang University of Science And Technology (POSTECH) | Sungkyunkwan University (SKKU) | National Taiwan University (NTU) | Osaka University | University of Science and Technology of China | Beijing Institute of Technology | City University of Hong Kong | Hanyang University | Harbin Institute of Technology | Hokkaido University | Indian Institute of Science (IISc) Bangalore | Indian Institute of Technology Bombay (IITB) | Indian Institute of Technology Madras (IITM) | Korea University | Kyushu University | Nagoya University | Nanjing University | National Chiao Tung University | The Chinese University of Hong Kong (CUHK) | The University of Hong Kong | Yonsei University | Zhejiang University | Beihang University (former BUAA) | East China University of Science and Technology | Huazhong University of Science and Technology | Indian Institute of Technology Kanpur (IITK) | Indian Institute of Technology Kharagpur (IIT-KGP) | National Cheng Kung University (NCKU) | National Taiwan University of Science and Technology (Taiwan Tech) | Technion - Israel Institute of Technology | Universiti Malaya (UM) | Universiti Sains Malaysia (USM) | University of Science and Technology Beijing | Waseda University | Wuhan University | Xiamen University | Xi’an Jiaotong University | Beijing University of Chemical Technology | Chulalongkorn University |

Material Science Journals:

Journal of Material Sciences & Engineering | Journal of Materials Science and Nanomaterials | Journal of Nanomaterials & Molecular Nanotechnology | Journal of Nanomedicine & Biotherapeutic Discovery | Journal of Nanomedicine & Nanotechnology | Journal of Nanosciences: Current Research | Journal of Nuclear Energy Science & Power Generation Technology | Journal of Polymer Science & Applications | Materials Science: An Indian Journal | Nano Research & Applications | Research & Reviews: Journal of Material Sciences | Journal of Powder Metallurgy & Mining  | International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering | Journal of Nanomaterials & Molecular Nanotechnology | International Journal of Advancements in Technology | Journal of Heavy Metal Toxicity and Diseases | Research & Reviews: Journal of Engineering and Technology | Journal of Aeronautics & Aerospace Engineering | Journal of Applied Mechanical Engineering  | Journal of Steel Structures & Construction | Industrial Engineering & Management | International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering | Journal of Scientific and Industrial Metrology | Journal of Steel Structures & Construction | Journal of Biomimetics Biomaterials and Tissue Engineering |

Material Science Societies:

The Materials Research Society (MRS) | American Chemical Society (ACS) | American Physical Society (APS) | The Materials Information Society (ASM International) | Microscopy Society of America (MSA) | The Minerals, Metals & Materials Society (TMS) | Sigma Xi: The Scientific Research Society | International Society for Optical Engineering (SPIE) | The American Ceramic Society | International Union of Pure and Applied Physics (IUPAP) | Federation of European Materials Societies (FEMS) | Institute of Cast Metals Engineers | Asia Pacific Society for Materials Research (APSMR) | International Association of Advanced Materials | Association for Iron & Steel Technology (AIST) | ASTM International (formerly American Society for Testing and Materials) | Institute of Materials, Minerals and Mining (IOM3) | Society for the Advancement of Material and Process Engineering (SAMPE) | 

 

Live Chat

Media Partners/Collaborator

A huge thanks to all our amazing partners. We couldn’t have a conference without you!

Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker

Sponsors/Exhibitors

A huge thanks to all our amazing partners. We couldn’t have a conference without you!

Talk to Us

Speak directly to one of our conference representatives by calling.


+0044-2033180199

Mail Us

E-mail us your questions about the conference. We will respond to your questions.


contact@euroscicon.com

Contact Us

Have questions?
We'll be in touch within 24 hours.


Contact Us

Address

EuroSciCon Ltd
35 Ruddlesway,
Windsor, Berkshire,
SL4 5SF, UK

EuroSciCon Events are produced by Euroscicon Ltd

EuroSciCon, founded in 2001 is a UK based independent life science Events Company with predominantly business and academic client base. The key strategic objective of EuroSciCon is to communicate science and medical research between academia, clinical practice and the pharmaceutical industry. Most of its events are in Europe and London or live streamed. EuroSciCon expanded its operations to international in association with Meetings International, Singapore. All major meetings of EuroSciCon and Meetings International will issue Continued Professional Education (CPD), Continued Education (CE), Continued Medical Education (CME) Credits.